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Real space

• 2-point correlations
• Minkowski Functionals
• Extrema counts
• . . .

Harmonic space

• Power spectrum
• Bi-tri-spectrum, . . .
• Wavelets
• . . .

• Tensor Minkowski Functionals



Outline

I Introduction to Tensor Minkowski Functionals (TMF)

I TMFs for the CMB

I Shape and relative alignment of structures
I Distribution of shapes

I Application to PLANCK data
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Tensor Minkowski Functionals - 2D space
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Scalar Minkowski Functionals : m = 0, n = 0
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∫
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Vector Minkowski Functionals : (m, n) = (1, 0), (0, 1)
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Tensor Minkowski Functionals: (m, n) = (1, 1), (2, 0), (0, 2)
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Of these only four are linearly independent. Divides into
translation invariant and translation covariant tensors.

Shape measures based on translation covariant tensors not
mathematically developed yet. Can be useful for position
dependent information about structures.



Focus on

W 1,1
2 =

∫
C
~r ⊗ n̂ κ d`

Translation invariant : choice of origin does not matter.

Example: ellipse
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Measure of intrinsic anisotropy of structures

Single structure:

W 1,1
2 −→ λ1, λ2

β ≡ λ1
λ2
, λ1 < λ2

0 ≤ β ≤ 1

Many structures: average anisotropy

β ≡
〈
λ1
λ2

〉



Measure of relative orientation of many structures

Average over all structures −→
〈
W 1,1

2

〉
−→ Λ1,Λ2

α ≡ Λ1

Λ2

0 ≤ α ≤ 1



Numerical calculation of W 1,1
2

Schroeder-Turk, Kapfer et al. (2009)

• Space is pixelized.

• Continuous curves are approximated by polygons
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Excursion sets of random fields
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• CMB fields given on surface of sphere.

• Use stereographic projection to project each hemisphere
onto circular disk on the 2D plane.

• Shape of curves not changed. Size gets scaled.



β and α for ΛCDM cosmology

Expectations

• Average β less than 1.

• Isotropic primordial power spectrum

↓
Expect to recover completely unaligned structures, α = 1.



β for ΛCDM cosmology

No of structures scales as θ−2
s .



β for ΛCDM cosmology: temperature

Larger smoothing pushes structures towards more
isotropic shape.



β for ΛCDM cosmology: polarization



Dependence on Cosmological parameters

Ωm = 0.95

β is not very sensitive to variation of matter content.



Dependence on primordial power spectrum

P (k) ∼
(
k

k0

)ns−1

, ns = 0.65

Change of P (k) changes the relative number of large
and scale structures. But β is unaffected.



Dependence on statistical anisotropy

T (n̂) = T iso(n̂) (1 + A n̂ · p̂), A = 0.2

β is sensitive to hemispherical anisotropy. Structures
become more anisotropic.



α and average β for ΛCDM cosmology: T

FWHM=20’, average over 100 maps



α and average β for ΛCDM cosmology: E mode

FWHM=40’, average over 100 maps



Summary of simulation results

• ΛCDM predicts average β ∼ 0.68.

• α ∼ 1 is recovered, as expected.

• Distribution of β is relatively unaffected by variation of
matter content and the primordial power spectrum.

• Distribution of β is sensitive to hemispherical anisotropy.

• Potentially useful for constraining physical effects that
introduce anisotropy - anisotropic cosmological models,
non-linearity, foregrounds, instrumental effects such as beam
shapes, etc.



Application to PLANCK 2015 data

Hotspots: ν = 1, Coldspots: ν = −1
FWHM=20’ for T, 40’ for E mode.

Field and
structure

Planck data Average from 100 simulations

α β α β

T hotspot 0.9889 0.6795 0.9911+0.0034
−0.0054 0.6754+0.0026

−0.0030

T coldspot 0.9936 0.6791 0.9910+0.0038
−0.0052 0.6754+0.0030

−0.0026

E mode
hotspot

0.9673 0.6820 0.9930+0.0034
−0.0034 0.6858+0.0022

−0.0028

E mode
coldspot

0.9593 0.6812 0.9928+0.0028
−0.0038 0.6854+0.0032

−0.0030



Findings

β

• Both temperature and E data from PLANCK agrees with
the simulation results within 3-σ.

α

• Temperature data from PLANCK agrees with the
simulation results within 3-σ.

• E mode data from PLANCK gives α ∼ 0.96. Deviates from
isotropic distribution of structures at 14-σ.



Future prospects

• Further investigations for the CMB on how to constrain
cosmology.

• Constraining reionization history using 21cm brightness
temperature.

• Large scale structure application - probing nonlinear
gravitational physics.



Integrand of Hypergeometric function

f(β) = A

(
β(1− β)

)`
(1− zβ)`+1/2+ns/4

0 < z < 1

ns is the primordial spectral index. f(β) gets more localized as
` increases. Peak shifts towards one as z moves towards one.

Fitting f(β) to the PDF seems to give characteristic scale
determined by the best fit ` and z values.


